Nuprl Lemma : rel-is-immediate
11,40
postcript
pdf
T
:Type,
R
:(
T
T
).
(
x
,
y
:
T
. (
R
^+(
x
,
y
))
(
(
R
^+(
y
,
x
))))
(
a
,
b
,
c
:
T
. (
R
(
a
,
b
) &
R
(
a
,
c
))
(
b
=
c
))
(
x
,
y
:
T
. (
R
(
x
,
y
))
(
R
^+!(
x
,
y
)))
latex
Definitions
Type
,
t
T
,
,
x
:
A
B
(
x
)
,
R
^+
,
f
(
a
)
,
x
:
A
.
B
(
x
)
,
A
,
P
Q
,
s
=
t
,
x
:
A
B
(
x
)
,
P
&
Q
,
R
!
,
P
Q
,
P
Q
,
Void
,
False
,
x
f
y
,
A
c
B
,
x
:
A
.
B
(
x
)
,
R
^*
,
s
~
t
,
{
T
}
,
SQType(
T
)
,
left
+
right
,
P
Q
,
{
x
:
A
|
B
(
x
)}
,
,
Dec(
P
)
,
#$n
,
,
a
<
b
,
(
i
=
j
)
,
b
,
b
,
,
rel_exp(
T
;
R
;
n
)
,
A
B
,
,
-
n
,
n
+
m
,
n
-
m
Lemmas
le
wf
,
rel
exp
wf
,
nat
plus
inc
,
bool
cases
,
eqtt
to
assert
,
bool
sq
,
eqff
to
assert
,
iff
transitivity
,
assert
of
bnot
,
not
functionality
wrt
iff
,
assert
of
eq
int
,
eq
int
wf
,
bool
wf
,
bnot
wf
,
assert
wf
,
decidable
int
equal
,
nat
plus
properties
,
rel-star-iff-rel-plus-or
,
rel
star
wf
,
rel
plus
iff2
,
rel-rel-plus
,
rel-immediate
wf
,
rel
plus
wf
,
not
wf
origin